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We construct binary de Bruijn graphs of odd order using recursive generation.  

We also explore the properties and nuances of these particular graphs.  The recursive 

method developed for this thesis could in principle be used for other de Bruijn graphs of a 

different order.  Suggestions on how this is accomplished are included in the paper and 

areas of further research topics. 
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I. INTRODUCTION 

A graph is a discrete structure consisting of a set of nodes and a relation on that 

set that is conveniently visualized as a set of edges joining certain pairs of nodes.  We 

make relatively little use of the terminology and theory of graphs here; what we use will 

be defined as the need arises.  In some applications of graph theory to practical problems 

(e.g., VLSI circuit design, software engineering diagrams, and the depiction of graphs for 

purposes of describing graph algorithms) it is useful to have a method for representing a 

graph that in one or another way facilitates understanding.  The goal might be to 

understand the structure of the object modeled by the graph itself, or to understand the 

behavior of an algorithm whose input includes a graph or network.  The study of models, 

algorithms, and systems for visualization of graphs and networks is called graph 

drawing.  For a survey of the field and its applications, see Di Battista (1999). 

Any sequence with the property that all but some small number of its terms are 

defined by some rule applied to their predecessors is said to be recursively defined.  The 

use of “term” here is broadly defined; the sequence might be of numbers, of functions, or 

(as in this paper) of graphs.  Similarly, an algorithm is said to be recursive if, in the 

course of solving a problem of size n, the algorithm calls itself to solve a smaller 

problem.  For a gentle introduction to recursion, see a standard introductory text on 

discrete mathematics, such as Rosen (1999).   

The focus of this paper is the design of a recursive graph-drawing algorithm for 

generating drawings of a particular sequence of graphs known as the Good-de Bruijn 

graphs. 

 

A. BACKGROUND 

Good (1946) and de Bruijn (1946) independently created the Good-de Bruijn 

graphs to solve the problems of the existence and enumeration of certain cycles of 0s and 

1s, namely cycles of length 2n containing each binary n-tuple.  Small versions of the 

graph were easily drawn to illustrate their ideas, but larger versions of the graph proved 

unwieldy to draw.  Massey and Liu (1965) to emphasize certain properties drew alternate 
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versions of the graph.  In particular, the Massey-Liu graph is easily extended recursively 

to larger sizes, something that is not apparent as originally depicted by Good and de 

Bruijn. 

There are additional interesting problems concerning the subject of shift register 

sequences and properties of the associated de Bruijn graphs that arise only because of the 

existence of the graph model.  One example of such a problem is Golomb’s Conjecture 

(1967) on the number of disjoint cycles that can simultaneously occur in the Good-de 

Bruijn graph.  Several papers have appeared concerning this conjecture, including one by 

Lempel (1971) describing both another conjecture that implies Golomb’s and also a 

structure that would have to exist in the graph if Lempel’s Conjecture were valid.  With 

the proof of the Golomb-Lempel Conjecture by Mykkeltveit (1971), the Cycle Adjacency 

Array (CAA) described by Lempel gives rise to another way to describe the de Bruijn 

graph.  This then leads to additional interesting questions.  The graph is not easily 

extendible in this configuration.  Nevertheless, larger versions of the graph than had 

previously appeared aren’t too difficult to construct.  Each different version of the graph 

exhibits its own specific properties better than another and each new presentation 

provides additional suggestions for new research topics.  With all of this information at 

hand, we set out to find a streamlined method to construct higher-order binary de Bruijn 

graphs via a recursive generation of the graphs. 

B. GOALS 

This thesis defines a recursive process to construct higher-order de Bruijn graphs.  

The process suggests a (seeming) fractal property that may appear in the graph.  By this 

process it is easier to build the graphs and eventually provide insight from a visual 

inspection of the graphs.  In the paper we present de Bruijn graphs of sizes up to 8192 

nodes.  The purpose of this set of graphs is to show properties of the graph on a small 

scale and to demonstrate the ability to recursively build higher-order graphs. 

C. ORGANIZATION OF STUDY 

The paper is organized into five chapters.  The first chapter is the introduction.  

Chapter II focuses on previous research in the development of de Bruijn graphs.  More 

detail is given there on the conjectures and graphs mentioned in Chapter I.  Chapter III 
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describes the process used to recursively build the odd order binary de Bruijn graphs and 

defines constraints and parameters of their construction; construction of even order 

graphs is similarly definable.  Chapter IV illustrates the results from the outlined 

constructive procedures.  Chapter V gives conclusions, recommendations and areas for 

future research. 
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II. LITERATURE REVIEW 

The de Bruijn graph was developed to provide a model for the solution to the 

problem of finding a cycle of length 2n containing every binary n-tuple (de Bruijn, 1946), 

(Good, 1946).  The graph Bn, of span n, contains 2n nodes (labeled with the binary          

n-tuples) and 2n+1 arcs.  The term span is defined as the length of the shift register, the 

size of the graph.  There is an arc from the node x = x1x2…xn to the node y = y1y2…yn if 

and only if x2x3…xn = y1y2…yn-1.  The solution to the problem is then given as a 

Hamiltonian cycle in the span-n graph visiting each node exactly once.  The number of 

such cycles is also known (de Bruijn, 1946) as well as the existence of cycles of each 

length 1, 2,…, 2n (Golomb, 1967).  The number of de Bruijn cycles is found employing a 

“doubling” of the graph, i.e., an Euler circuit visiting each edge in the span-(n-1) graph is 

equivalent to a Hamiltonian cycle in the span n-graph. This implies a recursive generation 

of the graphs, although actually drawing the graphs is difficult.  Krahn (1994) describes a 

generalization of these sequences for paths that cover the edges of Bn more than once.  

Other properties of the graph include its 2-regularity, 3-color ability (Berge, 1962) and 

non-planarity (in general) (Johnson, 1970).  For readers interested in further study of de 

Bruijn sequences see Fredricksen (1982). 

Since drawing the graph for higher orders is arduous, Massey (1965) developed a 

modularly recursive, alternative version of the graph.  This version is easily extendable to 

larger sizes.  A depiction of the span-4 graph is shown in Figure 2.1.  Note that the 

labeled regions depict the decimal representations of the nodes in the graph.  The 

(implicit) arcs are described as coming from internal nodes to the nodes immediately 

exterior to them.  There is also an arc from node 0 to itself.  The outer “ring” only 

appears to describe the arcs that also appear from 8→ 0 and 8→ 1; 9→ 2 and 9→ 3, etc.  

If the entries in the (phantom) outer ring are each increased by 16, the span-4 graph with 

its outer ring depicts the span 5-graph.  The addition of the appropriate phantom ring  

0′→ 31′ then describes the additional induced arcs of the span 5-graph to the interior 

nodes. 
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Figure 2.1.  Massey-Liu Graph for span n = 4 

Previously, graphs Bn were typically drawn exhibiting a left-right symmetry 

(x1…xn versus xn…x1) with respect to a vertical centerline.  See Figures 2.2 and 2.3 for 

versions of the graph Bn, for 1 <  n <  4.  Nodes that are self-symmetric appear on the 

centerline.  There is also a top-bottom symmetry (x1…xn versus 1x … nx ) with respect to 

the center point of the graph; here x  denotes the binary complement of x.  Graphs larger 

than B5 are complex to draw. 
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Figure 2.2.  B1-B4 as depicted by Golomb (1967) 

 

Figure 2.3.  B5 as depicted by Golomb (1967) 
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Employing the notion of doubling, Taylor (2001) creates a copy of B6.     In 

Figure 2.4, we show a depiction of this B6.  Note that the nodes are named by their 

decimal equivalent values. 

 

Figure 2.4.  Taylor’s depiction of de Bruijn graph for n = 6 
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Fredricksen (1992) displayed the graph as embedded in a sphere, shown in   

Figure 2.5. Note that as in the Massey-Liu graph, Figure 2.1, all the arcs do not appear.  

One successor arc is drawn from x→ y as it would appear in the pure-cycling shift 

register (Golomb, 1967).  The alternative arc (not appearing) would be drawn from the 

predecessor node x to the alternate successor node y ⊕ 00…01, where ⊕ denotes a 

modulo 2 addition of the n- long string 00…01. 

 

Figure 2.5.  Good-de Bruijn graph of span n = 6 embedded in a sphere 

We note that the de Bruijn graph is an important model in the areas of Markov 

Modeling, Convolutional Codes, Trellis Coding and Sequential Decoding.  The Viterbi 

Algorithm, which finds the most likely path through a graph given a maximum-likelihood 

measure on code words defined by the Convolutional Code, also uses the de Bruijn 

graph.  An implementation of the Viterbi Algorithm in silicon led Collins, et al. (1992) to 



10 

discover the largest planar subgraphs of the graphs B6 and B7 (of 64 and 128 nodes, 

respectively) and they then extended these into a span 14 (B14) Viterbi decoder of 16,384 

nodes, which flew on the Galileo Spacecraft. 

The model of the graph suggests many research problems.  One of these, 

suggested by Golomb (1967), is the conjectured largest number of simultaneous disjoint 

cycles in the graph.  The conjectured maximum is given by Z(n) = ?n ? d/n Φ(d) 2n/d, 

where the summation is taken over all divisors d of n and Φ is Euler’s totient function.  

The sum counts all necklaces of length n in 2 colors of beads or, equivalently, enumerates 

the equivalence classes of binary n-tuples under cyclic rotation.  Lempel (1971) 

conjectured that this same number of vertices, if removed from the graph, would be 

sufficient to leave the (directed) subgraph acyclic.  Mykkeltveit (1971) proved this.  

Lempel’s conjecture implied Golomb’s and inferred the existence of a Cycle Adjacency 

Array (CAA). 

In the CAA, the set S of removed nodes is subjected to the transformations L, L2, 

etc. to form a sequence, S, L(S),…,Lk(S) = S, which is ultimately periodic.  The 

transformations is defined by L(S) = {x| xεS or 2x and 2x+1 whenever both x and     

x+2n-1 εS}.  Thus, x and its companion x+2n-1 appearing in S are replaced by the two 

possible (shared) successors 2x and 2x+1, respectively, in L(S).  Note, these changes   

x→ 2x and x+2n-1→ 2x+1 describe one step along the cycles defined by the cyclic 

equivalence classes described earlier.  An example of a CAA for the case n = 5 is shown 

in Figure 2.6. 

0 0 0 0 0 0 0 0 0 0 0 0 0 
16 1 2 4 4 4 4 4 4 4 4 8 16 
17 17 3 6 6 6 12 12 12 24 24 24 17 
18 18 18 5 10 10 10 10 10 10 20 9 18 
19 19 19 7 7 7 14 14 28 25 25 25 19 
21 21 21 21 11 22 13 13 13 26 21 21 21 
27 27 27 27 27 23 15 30 29 27 27 27 27 
31 31 31 31 31 31 31 31 31 31 31 31 31 

Figure 2.6.  Cycle Adjacency Array for n = 5 

The first column to the left of the vertical bar is the removed set S.  The successive 

columns are Γ(S), Γ2(S), until Γ12(S) = S again.  When the set S has been chosen properly 
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and Γk(S) = S with k > 1 then the set S satisfies Lempel’s conjecture and thereby 

Golomb’s conjecture.  As drawn in Figure 2.6, removing the black values and leaving 

only the red numbers gives a different version of the graph B5.  The numbers are the 

decimal equivalents of the nodes.  The rows are the cycles of the cyclic equivalence 

classes and appearance on a row is evidence of an adjacency in the graph B5.  The other 

implicit arc of the node x goes to the node 2x +1(mod 2n) in the same column of the 

successor 2x(mod 2n) shown in the respective row.  We suppress these arcs only to keep 

the graph easy to view.  Larger graphs are possible, such as for n = 7 and n = 9 as they 

appear in Fredricksen (1992).  One can even suppress the numbers, as they can be 

understood also!   

In another application, Bryant et al. (1991) show that when additional nodes are 

removed from Bn, maximum independent sets can be formed.  Their procedure leads to a 

fractal- like property in the graph Bn. These various methods to explain the graph and its 

properties have led to this paper and a method of construction for the graph that is 

recursive and therefore extendable to larger sizes.  A detailed description of our method 

is given in Chapters III and IV.  Thus the research in the underlying combinatorics leads 

to improvements in the model on occasion, and also the different versions of the model 

can lead to new mathematical research. 
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III. CONSTRUCTING THE GRAPH 

The de Bruijn graph and some of its properties and applications are detailed in 

Chapter II.  The difficulty in drawing the graph for larger spans is the inspiration for our 

efforts to find a better method.  Some of the symmetric properties used to draw the graph 

originally yield the inferences that we need, namely: 

1) The nodes of the directed graph Bn, represented by the 2n binary n-tuples, 

obey a left-right symmetry with respect to the centerline of the graph (CLn) so that the 

node x1x2…xn is symmetrically placed opposite the node xnxn-1…x2x1. 

2) The nodes of Bn are placed so that the node x1x2…xn is placed 

symmetrically opposite the node 1x 2x … nx  with respect to the center point of the 

drawing. 

When constructing higher-order binary de Bruijn graphs by recursion, several 

techniques can be considered.  It is natural to consider recursive processes, Bn → Bn+1 , 

Bn → Bn+2 , Bn → Bn+3 , etc., with B1 forming a basis for the process.  Each step 

increment, n ?  n+k, dictates a different recursive method.  The step increments also 

prescribe the number of copies needed for the recursion.  That is to say, to implement    

Bn → Bn+1 requires two copies of Bn, Bn → Bn+2 requires four copies of Bn, Bn → Bn+3 

requires eight copies of Bn, etc.  Each incremental method also has its own separate and 

unique challenges and varied nuances of construction.  For the purpose of this paper, we 

focus on one method of recursion, namely Bn → Bn+2.  We note that there is a difference 

between graphs of even and odd order further detailed in Chapter V.  This leads to 

additional issues when applying Bn → Bn+1 , Bn → Bn+3, etc.  Furthermore, our 

presentation only addresses graphs of odd order.  Even-to-even constructions,           

even-to-odd, odd-to-even and other recursive methods are topics for future research and 

development and we describe some of the issues involved in Chapter V.  These processes 

present no essentially difficult problems beyond those which we deal with here.  Thus, 

the rest of the paper illustrates odd order binary de Bruijn graphs built by quadrupling,  

Bn → Bn+2 , employing heavily the symmetry properties (1) and (2) above. 
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A. LABELING 

We first describe our labeling conventions.  The nodes of the graph are classically 

labeled by binary n-tuples or their decimal equivalents.  We use a binary representation 

for the nodes, as that fits our construction better.  The basis of the recursive process is the 

graph B1.  Labeling by binary 1-tuples, the top node is labeled 0 and the bottom node is 

labeled 1.  B1 is shown in Figure 3.1.  Note that we have suppressed all of the arcs as they 

are not relevant for our process.  We also include the centerline of symmetry from 

property 1) and the center point x of symmetry from property 2).  These provide an aid to 

a recursive construction process.  Often the center point x will not appear explicitly in our 

construction.  We call the centerline of Bn, CLn and the center point CPn. 

0

1

X

 

Figure 3.1.  de Bruijn Graph, B1 

For each iteration, as the span n increases by 2, the number of nodes appearing 

increase by a factor of 22 or 4.  Our labeling system plays a large role in determining the 

overall graph.  The binary strings representing the nodes of Bn are used to implement  

left-right symmetry and top-bottom symmetry properties described above.  They are 

applied on the nodes of Bn and those of Bn+2 as we proceed.  This binary representation is 

also used to identify the self-symmetric nodes that belong on the centerline of the 

respective graphs.  Such nodes are self-symmetric if the binary strings are left-right 

palindromes.  This placement of nodes is addressed and clarified in Chapter IV after the 

recursive process is explained further below. 
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B. PARAMETERS AND CONSTRAINTS 

Before describing the recursive process, we need to establish additional rules for 

the recursive construction.  We refer to these rules as the constraints and parameters of 

the process.  Without fixed constraints and parameters, the de Bruijn graph will assume 

any arbitrary shape and consequently defeat our purpose of establishing an easy-to-

extend pattern. 

We define β  to be the clockwise measure of the angle between the centerline CLn 

and the node 00…01.  Beginning with B1 we establish a target size B2m+1 as the end of 

our process.  The constraints demand that the value β  of the final graph, B2m+1, does not 

exceed 60o.  If the initial angle on B3 is α, see Figure 3.2, then the size of α cannot 

exceed β/m, according to the recursive process used to build higher order graphs.  This 

point is clarified later in this section.  Parameters of our construction also include the  

length A, the length of the first centerline CL1 on B1 and the length B, the distance from 

the top node 000 on B3 to the grid center point CP3, the length C, the distance between 

the top center node, 010 on B3, and CP3.  The angle α remains constant throughout the 

entire recursive process and is constrained as described above.  The parameters are 

indicated in Figure 3.2.  Three of the four copies required to complete B3 are depicted.  

Note that the distance A is retained on each of the copies used in the figure and the angle 

α is the same for each of the three copies shown.  Details on the colors used and the 

names of the nodes, etc., are reserved to Chapter IV. 



16 

α
A

B

C

 

Figure 3.2.  Parameters for our recursive process 

By adjusting the parameters α, A, B and C, as illustrated on the graph B3, we 

change the shape of the “building block”.  B3 is the “building block” for larger graphs in 

our illustration of the process.  The shape of B3 dictates the shape of all subsequent 

graphs.  As the lengths A and B increase, the entire graph B2m+1 gets longer, and as these 

lengths decrease the graph gets shorter.  How C affects the graph depends upon the 

relative adjustments to A and B.  Increasing α widens the graph and decreasing it makes 

the graph thinner. 

The chosen sizes of the parameters are determined in the following way.  Length 

A is established on B1.  This is an overall scaling parameter and has little effect in the 

sequel.  Lengths B and C will be discussed later.  It is best to describe their choice in the 

recursive process section.  The measure of α is dictated by a predetermined span of the 

final graph as described above.  That is, the choice of α is made with an eye to the 

ultimate target value of Bn that we seek to achieve.  Namely, to produce B9 by                       

B1 ?  B3 ?  B5 ?  B7 ?  B9, we perform three iterations of Bn→ Bn+2, since the basis for 

the process is really B3.  But if the final angle measure satisfies β < 60o, then the initial 

angle α must have measure satisfying α ≤  β/4 ≤  60o/4, therefore α < 15o.  Further 

discussion of the other parameters is incorporated in the recursive process described next. 
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C. RECURSIVE GENERATION 

The recursive process is a set of instructions to be repeated at each iteration.  In 

designing the process, we have in mind that it should be easy to follow and easy to 

duplicate.  Moreover, the target graph Bn should be easy to understand and view.  The 

process to build B3 utilizes B1 of Figure 3.1, rotates it clockwise by α from a centerline, 

and four copies are produced.  Parameter A and angle α have been described above.  We 

now describe how the parameters B and C are chosen.  Details of the names of the nodes 

as described are given later in this section.  B is the length from the top node, 000, of the 

first copy of B1 to the center point CP3 and C is the length between the top center node, 

010, and the center point.  Clearly the lengths A, B and C are inter-dependent.  Namely,  

adjustments on length B automatically adjust length C and vice-versa according to the 

symmetry properties 1) and 2).  In a similar way adjustments on length A result in 

adjustments affecting lengths B and C, though not necessarily in the same manner. 

The following choices affect equivalent ways of adjusting B and C and ultimately 

completing the graph: 

a) From the labeling, we know that nodes 010 and 101 on B3 are self-

symmetric and therefore appear on CL3.  Note that node 010 should be placed 

above node 101, as our experience seems to say. 

b) CP3 can be determined on CL3, midway between nodes 010 and 

101.  Thus lengths B and C are implicitly determined. 

c) The location of node 111 on CL3 is determined by symmetry (2) as 

symmetrically opposite node 000, with respect to the center point CP3. 

d) The location of node 011 below node 001 on a line parallel to CL3 

is determined by symmetries (1) and (2) on node 100.  Equivalently, we place 

node 110 below node 100 on another line parallel to the centerline. 

Following the symmetric properties, the construction results in the skeleton of B3 

(without arcs, of course).  From here we begin the recursive generation, proper.  To build 

B5 we require four copies of B3.  The nodes of B3 are labeled as 000, 001, 010, 011, 100, 

101, 110, 111.  The first copy of B3 has label 00 appended on each node as 00(_ _ _) for 
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placement on B5.  Subsequent copies are labeled as 01(_ _ _), 10(_ _ _), and 11(_ _ _) for 

the four copies.  These are rotated and translated according to a procedure delineated 

further in Chapter IV.  The symmetry properties (1) and (2) are employed heavily in the 

translations applied to the four copies.  The CL3 of each copy of B3 plays an important 

role in the construction of B5.  Surprisingly, the construction of B5 depends in a crucial 

way on the eventual CL7 that will be established on B7.  The nodes that appear on CL7 are 

assumed to be properly placed in B5 only if they lie on a line in B5 according to our 

procedure.  However, their location on that line depends in a surprising way on the 

location of the nodes on CL3!  This is explained in more detail in Chapter IV.  Here we 

merely note our process and self- imposed rules.  Namely, given Bn, we rotate it 

clockwise α, make four copies and place these on the grid according to symmetric 

properties (1) and (2). 

In Chapter IV the names of the nodes used are typically suppressed and a      

color-coding system is used to describe the nodes and the binary representation for the 

nodes for the four copies of Bn used.  Once these copies are placed on the graph the 

construction is complete.  This describes the recursive method for a Bn → Bn+2 

construction for odd values of n.  For even values of n a different basis is required as 

described in Chapter V. 

The same procedure is used to build graphs of arbitrary order.  We see in    

Chapter IV that, during the construction, the parameters A, B and C determining the 

location of the nodes of Bn+2 might need to be adjusted.  These adjustments all take place 

on the “building block”, B3.  Thus, the building block B3 is crucial to our process and we 

need to build a “reasonable” B3.  By reasonable we mean that no overlapping nodes 

should appear in the first few iterations of the process.  So if B7 has overlapping nodes we 

return to B3 and adjust the parameters B and C.  The impact of the adjustments on B or C 

might be earliest seen after several iterations, so it is typically necessary to draw B7 to 

ensure that B3 is going to produce a “reasonable” graph.  It is unrealistic to think that the 

nodes will never overlap, except in principle.  In Chapter IV, we see that it becomes 

inevitable that nodes overlap beyond a certain value of the span. 
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Now that we have procedures for building odd higher order binary de Bruijn 

graphs in place, we see in the next chapter what the higher order graphs look like. 
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IV. RESULTS 

Chapter III introduced the recursive process for constructing higher-order,      

odd-span, binary de Bruijn graphs.  This chapter illustrates the results of the recursive 

generation and further details what was described previously.  We also present certain 

additional properties of the graphs we construct in this chapter. 

A. BUILDING THE GRAPHS 

We first illustrate in Figures 4.1-4.4 how to construct the “building block”, B3.  

This illustration shows little regard to lengths B and C, as these are mostly involved in 

later iterations.  Later in the chapter, particular attention will be paid to how changes in 

lengths B and C affect subsequent graphs. 

STEP 1: As described in Chapter III, we first make four copies of the 

rotated graph B1.  For our illustration, length A is set to 2 inches and α = 15o.  For 

purposes of labeling the copies and their respective nodes we append two high order bits, 

to each binary string of respective copies.  The two appended bits are 00 for the first 

copy, 01 for the second copy, 10 for the third copy and 11 for the fourth copy.  Note that 

different colors are also employed to distinguish between copies.  For the purpose of our 

illustration, copy 0 is red, copy 1 is yellow, copy 2 is green and copy 3 is blue. 

0

1

00

0

1

01

0

1

10

0

1

11

 

Figure 4.1.  Four copies of B1 
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STEP 2: Copy 0 is placed on a centerline CL3 with its node 0, namely the 

node 000, on the centerline and the center point CP3 is located according to parameter B.  

Copy 1 is placed with its node 0, namely node 010, on the centerline according to length 

C and its self-symmetry.  That is, node 010 is on CL3 as the node, 010, is self-symmetric.  

This results in Figure 4.2. 

010

011

000

001

CP3

CL3

 

Figure 4.2.  Placement of copies 0 and 1 
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STEP 3: We locate copies 2 and 3 according to top-bottom symmetry 

(property 2), left-right symmetry (property 1) and self-symmetry.  Nodes 101 and 111 are 

self-symmetric, so appear on CL3.  Note that each of these nodes is node 1 in copy 2 and 

copy 3, respectively.  The result appears in Figure 4.3. 

010

011

100

101

000

001

110

111

 

Figure 4.3.  Placement of copies 2 and 3 
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STEP 4: We draw the outline shape, resulting in the skeleton of B3 when we 

remove the construction lines.  The final product is B3, as appears in Figure 4.4, with 

most of its arcs suppressed and the CL3 appearing. 

010

011

100

101

000

001

110

111

 

Figure 4.4.  Recursively generated B3 
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In creating the graph B3 of Figure 4.4, the parameters A, B and C were each 

considered.  However, once B3 is constructed to be used as the basis for the additional 

recursive construction, these parameters are no longer used.  The only parameter of 

importance for building subsequent graphs Bn now is the angle α.  The symmetric 

properties (1) and (2) are the only guides we need for placement of the four copies we use 

after the building block B3 is made.  B5 is drawn from four copies of B3 in three steps, as 

illustrated in Figures 4.5-4.8.  For this illustration B3 is reduced in size so we could fit the 

graph on the page (A = 1.25 inches). 

STEP 1: A copy of B3 is rotated through the angle α.  For this iteration       

α = 15o.  Four copies of B3 labeled 00, 01, 10, 11 are made.  Notice in Figure 4.5 that in 

the center of each copy of B3 are the two digits that we append when labeling the nodes 

in B5.  The labeling follows a similar pattern each time we employ it. 
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011

100

101

000

001

110

111
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011

100

101

000

001

110

111

010

011

100

101

000

001

110
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010

011
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000

001

110

111

00 01 10 11

 

Figure 4.5.  Four copies of B3 
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STEP 2: We place the four labeled copies of B3 on CL5 according to 

symmetry properties (1) and (2).  The centerline nodes for CL5 are the self-symmetric 

nodes, namely 00000, 00100, 01010, 01110, 10001, 10101, 11011 and 11111.  Figure 4.6 

illustrates the placement of B3 (red) and the positions of some of the other nodes of B5 

required by symmetry property (1) as they would appear in a symmetrically placed copy 

of B3. 

10(000)

11(000)

11(100)

01(000)

10(100)

αα

 

Figure 4.6.  Illustration of Symmetry Property 1) 

Notice the location of the nodes 10(000) and 01(000) and their colors.  These are 

symmetrically placed opposite nodes 00(001) and 00(010), respectively.  They are also 

used to place the second and third copies of B3.  Node 11(000), symmetrically placed 

opposite node 00(011), is used to place the fourth copy of B3.  Since α is the same angle 

for each copy, we are done when these four nodes are placed as the four copies of B3 can 

then be located.  We make the point that the other nodes on the centerline of the right 
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(black) copy of B3 are 00000, 01000, 10100 and 11100.  Their eventual appearance as 

00(00000), 00(01000), 00(10100) and 00(11100) on CL7 is ensured by there appearance 

on CL3 of this (black) copy!  It follows that these nodes are on a line in B5 from 

symmetry property (1) and their appearance as 000, 010, 101 and 111 on CL3 in the 

respective locations.  The drawing of the second, third and fourth copies, given their 

respective 000 node and the angle α, is easily seen in Figure 4.7. 
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00011

00100

00101

00000

00001

00110

00111

01010

01011

01100

01101
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01001

01110
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10110

10111

11010

11011
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11000

11001

11110

11111

 

Figures 4.7.  Placement of copies 0, 1, 2 and 3 
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STEP 3: Finally, we draw the outline shape, the skeleton of B5, and remove 

all other construction lines.  The final graph is B5.  We retain the signature colors for 

clarity and suppress all the arcs for the same reason. 
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00100

00101
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00111

01010

01011

01100

01101

01000

01001
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10110
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11001
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Figure 4.8.  Recursively generated B5 

Just as we generated B5, we also generate B7, and so on.  To ensure that the all the points 

are properly symmetrically placed, we consider the centerlines of each Bn, Bn-2 and Bn+2.  
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We now address the issue of whether we like the building block we have created. 

If we use a traditionally shaped B3, as shown in Figure 4.9,we create a B5 and B7 as also 

shown.  Notice there results a reasonable-looking B5, but the graph B7 has some 

overlapping nodes that we don’t like. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9.  Traditional B3, generating B5 and B7 

Thus, the lengths B and C need adjustment.  In Figure 4.10, length C has been 

adjusted so that node 010 is placed farther from the center point and lengths A and B 

remain the same.  The result for this less traditional B3 is tested on B5 and B7.  The B5 

graph is reasonable but once again the B7 graph is not. 

 

 

B3 B5 B7 
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Figure 4.10.  Non-traditional B3, generating B5 and B7 

By further adjustment, mainly to length C, we finally are able to produce a 

reasonable- looking B7.  The top center node, 010 of B3 lies just below the line, between 

the nodes 001 and 100 as shown in Figure 4.11. 

 

 

 

 

 

 

 

 

B3 B5 B7 
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Figure 4.11.  Model B3, generating B5 and B7 

So this model of B3 yields a reasonably nice B7 and is used further in the creation 

of the graph B9 illustrated in the next section of this chapter.  We also produce graph B11 

from this model of B3; this appears in Chapter V.  The graphs B11 (Figure 5.3) in   

Chapter V reveal that further adjustment of not only length C but also the parameters α 

and B are necessary.  As α gets smaller, pursuant to our desire to hold β ≤  60o, C can get 

smaller by moving node 010 to be closer to the center point CP3 and B can get longer and 

we still produce a reasonable looking B7.  Figure 4.12 shows the graph B3 (and the 

respective B5 and B7) used in the construction of graphs B11 and B13, (Figures 4.15 and 

4.16) illustrated in the next section. 

 

 

B3 B5 B7 
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Figure 4.12.  B3 used to generate B5-B13 

Thus, when determining parameters to adjust, we have to know the desired 

outcome graph Bn.  In Chapter V we outline a scaling procedure that would allow us to 

ignore this step.  Recall that we mentioned earlier that the nodes of the graphs would 

overlap eventually.  As the span of the graph grows it is unavoidable that some 

overlapping will occur since the number of nodes grows exponentially and the space to fit 

them in is finite. 

The Bn→ Bn+2 recursive technique is a smooth, simple construction for building 

odd higher-order binary de Bruijn graphs.  First we construct the building block B3 in 

four steps, then a three-step algorithm, using the recursive generation, is performed to 

produce Bn+2 from Bn.  This method proves to make the de Bruijn graph easily 

extendible.  With this method, higher order graphs can be constructed and properties of 

these larger graphs can be discovered and developed. 

 

B3 B5 B7 
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B. PROPERTIES OF THE GRAPH 

Through experimentation, some interesting properties were discovered about the 

graphs constructed.  These properties address the importance of the labeling system we 

employ, the building block B3 and how the centerlines CLn shift as the span n grows. 

The labeling system and color-coding we use make identifying specific nodes a 

simple exercise.  In Figures 4.13 and 4.14, we demonstrate the ease of locating a 

particular node in B9.  Such a question would need to be considered if we were to draw 

the arcs x → 2x and x → 2x+1 in the graph.  Consider as an example the node numbered 

294.  Where is node 294 on the B9 graph? 
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Figure 4.13.  Recursively generated B9 

The binary representation of 294 gives a hint to its location.  The binary 

representation for 294 is 100100110.  We decompose the binary string.  The first two 

bits, 10, represent copy 2 of the B7 graph used to construct B9.  The next two bits, 01, 

represent copy 1 of the B5 graph used to construct B7.  The next two bits, 00, represent 
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copy 0 of the B3 graph used to construct B5.  The final three bits 110 give the location on 

B3.  So 294 is in the third copy of the second copy of the first copy of the node 110 of B3 

all represented on the 9-graph.  Note, some of the nodes would be colored initially as 

green, then yellow, then red.  We only retain the last color they take on. 

 

Figure 4.14.  Location of node 294 on B9 
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Another interesting property of the construction is its sparse appearance near the 

outer shell.  There appears to be a relationship among these nodes.  That relationship is 

related to the building block, B3.  The building block B3 can be found in many guises 

throughout all the generated graphs.  However one unique location of copies of B3 is as 

they appear along the edges of Bn.  As the graph grows, to span 11 and span 13, an 

interesting phenomenon occurs.  The center of Bn becomes dense, but the region closer to 

the graph’s outline maintains a sparse appearance as we noted.  The nodes near the 

exterior can be viewed as a set of overlapping copies of B3 around the edge.  Consider the 

graphs in Figures 4.15 and 4.16, where copies of B3 are highlighted in red.  The analysis 

of this phenomenon can help us understand the density of nodes appearing in Bn.  Note 

that the density of the nodes is becoming extreme in B11 and B13.  If we used smaller dots 

to indicate the nodes it would not appear so dense in the center.  Nevertheless, the center 

of Bn is much more dense than the outer shell. 
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Figure 4.15.  B11 with outlining copies of B3 
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Figure 4.16.  B13 with outlining copies of B3 
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An additional property that we address involves properties of the centerlines of 

the graphs.   From the recursive process for constructing Bn+2 we use four copies of the 

previous graph Bn.  The centerlines of the copies are used primarily to represent how the 

copies shift in each iteration.  They also show that our construction rules are consistent, 

as we inferred earlier.  These centerlines replicate the four copies that arise first in the 

design of B3.  If the four centerlines of Bn are reflected in Bn+2 about CLn+2, the nodes that 

they intersect on Bn+2 are the nodes that will ultimately appear on CLn+4.  Namely, the 

dotted line in B5 of Figure 4.17 is the reflected version (symmetry1) of copy 0 of CL3 of 

B3.  The nodes on this gray line appear as the red nodes of the centerline CL7 of B7.  We 

addressed this point when we discussed building B5 in Section III.C.  We also note that 

the centerlines of the second and third copies of Bn appear very close together in Bn+2.  As 

n grows all four of these centerlines Bn become almost vertical and very close together.  

Figure 4.17 compares n = 3 to n = 5 and 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17.  Centerlines on B3, B5 and B7 

B3 B5 B7 
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Angle β  increases with each iteration, and in turn the centerlines of the first and 

second copies of Bn draw closer together.  As the recursion progresses and the graph 

continues to grow, the centerlines of these copies 1 and 2 will eventually overlap and 

ultimately change places.  As this happens, β  becomes distorted and the entire graph 

becomes indistinct.  This forms the basis for our requirement that β ≤  60o.  Without 

requiring β ≤  60o this growth of the angle leads to the necessity to scale the graph.  In 

Chapter V we address the importance of scaling and our thoughts on how it might be 

accomplished. 

The properties presented here indicate that there are many more properties of the 

de Bruijn graph that remain to be discovered.  We discuss some of the possibilities in the 

next chapter. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

In this chapter we address issues that arose when executing the recursive 

generation and some thoughts for the future research on this general topic. 

A. SUGGESTIONS TO IMPROVE OUR IMPLEMENTATION 

Two major issues of concern that arose during the experimental phase, efficiency 

of the process of building the graphs and our inability to scale the graphs. 

The implementation of the recursive process of graph building was carried out 

manually.  It was time-consuming to manually create each graph, and to copy, rotate and 

place the copies properly without the ability to set parameters automatically.  Cleary, a 

computer program to build de Bruijn graphs by the recursive process is needed and 

clearly it is possible to produce such a program.  With such a program, one could adjust 

the parameters in many different combinations and quickly view their effect.  A program 

would enable us to consider even more models of building blocks to construct and test.  

We would then likely also discover more properties from the additional building blocks. 

Not only does the process of building the graph need to be streamlined through a 

computer program but there also needs to be included in that program a method for 

scaling down graphs for larger orders.  As we constructed the graphs, the required angle 

α on the building block B3 was established in an ad hoc manner by choosing a size for a 

predetermined final graph.  If the initial α was fixed and the span of a final graph was not 

predetermined, then a scaling factor would be necessary to construct graphs that obeyed 

the constraints given.  For example if an initial value of the angle α = 20o; then the 

constructed B7 has β? at the maximum value of 60o.  The skeleton of the B7 is shown in 

Figure 5.1. 
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Figure 5.1.  Outline of B7 at α = 20o 

Extending another iteration to B9 shows that this instance of B9 has β  = 80o.  β 

obviously exceeds the constraint; see Figure 5.2.  It is not yet problematic, but as we 

continue to B11 we see that B11 has a completely distorted β  of 100o; see Figure 5.3.  
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Figure 5.2.  Outline of B9 at α = 20o 
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Figure 5.3.  Outline of B11 with the 4 B9 copies shown at α = 20o 

This pumpkin shape is unacceptable.  Continuing the process will allow β  to exceed 360o.  

The ability to scale the graphs during the recursive process is critical.  We need a means 

of scaling the graph down after each iteration.  It should be scaled by the same fraction 

each time so as to create an easy-to-follow algorithm within the recursive generation.  In 

other words, a scaling algorithm should be embedded in the recursive construction of the 

graphs.  The computer program to generate should include this feature. 

B. FUTURE RESEARCH 

Our goal when beginning this study was to produce de Bruijn graphs, through 

recursive generation, that were easy to construct and use.  There were many techniques to 

choose from for the recursive process.  We chose to consider the recursive process using 
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Bn → Bn+2.  We also presented only our work focusing on odd-to-odd order recursions, 

with B1 forming a basis.  We have some thoughts on the other recursive processes such as 

Bn → Bn+1 and Bn → Bn+3 and even to even recursion.  There are different results to be 

achieved using these other techniques.  For example, the even-span graphs have nodes 

lying on the line through CP2n perpendicula r to CL2n.  This is a little more cumbersome 

for our process.  The transition from even to odd or odd to even changes the character of 

the graphs involved relative to this horizontal line.  The issues are manageable but a little 

unwieldy.  Additional nuances and properties are involved in completing other orders.  

For example, the basis for even to even construction may involve an additional 

parameter.  These are further areas to be explored.  The same recursive algorithm could 

be used but there are some differences in the outcomes. 

We were able to build a “reasonable” looking B7.  We are intrigued to note that there 

appears to be some relationship between de Bruijn graphs and fractals.  With the ability 

to scale the graphs, fractal behavior can be observed.  In order to show that de Bruijn 

graphs are fractal, one would have to use a recursive process, show self-similarity and 

also show the graphs have fractional dimension.  A recursive process creating the de 

Bruijn graphs has been demonstrated in the models.  However, they do not appear self-

similar in any traditional sense and currently have no fractional dimension that we have 

been able to demonstrate. 

For future experimentation, a computer program will expedite the building process of 

de Bruijn graphs.  The program should have the ability to reduce or expand (scale) the 

graph during the recursive process.  This feature is important because the next iteration of 

this research is to discover how the other orders behave and verify whether de Bruijn 

graphs are fractal or not. 
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